LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

ACADEMIC PRESS, INC. ("AP") AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION OR PRODUCTION OF THE ACCOMPANYING CODE ("THE PRODUCT") CANNOT AND DO NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY USING THE PRODUCT. THE PRODUCT IS SOLD "AS IS" WITHOUT WARRANTY OF ANY KIND (EXCEPT AS HEREAFTER DESCRIBED), EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF PERFORMANCE OR ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. AP WARRANTS ONLY THAT THE MAGNETIC DISKETTE(S) ON WHICH THE CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND FAULTY WORKMANSHIP UNDER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY (90) DAYS FROM THE DATE THE PRODUCT IS DELIVERED. THE PURCHASER'S SOLE AND EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS EXPRESSLY LIMITED TO EITHER REPLACEMENT OF THE DISKETTE(S) OR REFUND OF THE PURCHASE PRICE, AT AP'S SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY OR TORT (INCLUDING NEGLIGENCE), WILL AP OR ANYONE WHO HAS BEEN INVOLVED IN THE CREATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO PURCHASER FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRODUCT OR ANY MODIFICATIONS THEREOF, OR DUE TO THE CONTENTS OF THE CODE, EVEN IF AP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

Any request for replacement of a defective diskette must be postage prepaid and must be accompanied by the original defective diskette, your mailing address and telephone number, and proof of date of purchase and purchase price. Send such requests, stating the nature of the problem, to Academic Press Customer Service, 6277 Sea Harbor Drive, Orlando, FL 32887, 1-800-321-5068. APP shall have no obligation to refund the purchase price or to replace a diskette based on claims of defects in the nature or operation of the Product.

Some states do not allow limitation on how long an implied warranty lasts, nor exclusions or limitations of incidental or consequential damage, so the above limitations and exclusions may not apply to you. This Warranty gives you specific legal rights, and you may also have other rights which vary from jurisdiction to jurisdiction.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE IS SUBJECT TO THE UNITED STATES LAWS UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED. ANY FURTHER SALE OF THE PRODUCT SHALL BE IN COMPLIANCE WITH THE UNITED STATES DEPARTMENT OF COMMERCE ADMINISTRATION REGULATIONS. COMPLIANCE WITH SUCH REGULATIONS IS YOUR RESPONSIBILITY AND NOT THE RESPONSIBILITY OF AP.
Virtual Reality ExCursions
WITH PROGRAMS IN C

Christopher D. Watkins
Stephen R. Marenka
List of Illustrations

Figure 1.1—In another world (Virtual Research HMDs)................................. 2
Figure 1.2—Aerial view of the GVU Center lab... 4
Figure 1.3—View of a virtual man in a virtual environment......................... 4
Figure 1.4—View over Georgia Tech Campus and Downtown
Atlanta from the North... 7
Figure 1.5—View over Georgia Tech Campus and the Tower 7
Figure 1.6—View over Georgia Tech Campus and the Coliseum................. 8
Figure 1.7—View over Georgia State University Urban Life / Law
Building and downtown Atlanta ... 10
Figure 1.8—View from street of Georgia State University Law
Building and downtown Atlanta ... 10
Figure 1.9—One time step in a molecular dynamics simulation. A
NaCl cluster is smashing into a Ne surface with temperature
mapped to color ... 14
Figure 1.10—IVEX Corporation Flight Simulator showing cockpit
and view ... 17
Figure 1.11—IVEX Corporation Flight Simulator showing simulation
behind the scenes .. 18
Figure 1.12—IVEX Corporation Flight Simulator showing helicopter
cockpit setup ... 19
Figure 1.13—Motion Interactive Dive Sequence... 24
Figure 1.14—Virtual view from a balcony overlooking a lobby............... 26
Figure 1.15—Virtual view from a glass elevator overlooking Georgia
Tech campus ... 27
Figure 1.16—Motion Interactive of a Diver ... 30
Figure 1.17—Motion Interactive of an Athlete ... 31
Figure 1.18—Ocular Surgery Simulator .. 35
Figure 1.19—Ocular Surgery Simulator .. 38
Figure 1.20—Ocular Surgery Simulator .. 39
Figure 1.21—Ocular Surgery Simulator .. 39
Figure 2.1—Front view of a virtual Japanese Temple 44
Figure 3.1—"An anatomical look at the arrangement of the visual
projection system in humans. Information from each visual
half-field is projected directly to the visual cortex of the
contralateral hemisphere" .. 90
Figure 3.2—The impression of a flying bird is built up in the brain
from color, motion, form, and depth .. 94
Figure 3.3—Filling in the blind spot with a pattern—close your left eye, stare at the cross, and slowly move the page closer and farther until you notice the disk filled in by slanted lines 96
Figure 3.4—Filling the blind spot with background .. 96
Figure 3.5—Beauty is in the pupil of the beholder .. 99
Figure 3.6—Roger Hayward’s pattern for a Prevost-Fechner-Benham disk ... 110
Figure 3.7—The Necker cube ... 112
Figure 3.8—Thiéry’s figure ... 112
Figure 3.9—The Gibson after-effect ... 112
Figure 3.10—Here about 80% of the white triangle is not present, but is synthesized in toto by the brain, and appears as convincing, if not more so, than the line triangle, which is 80% explicitly drawn ... 113
Figure 3.11—What do you see? ... 114
Figure 3.12—“perverted signature” ... 115
Figure 3.13—The otoconia crystals ... 121
Figure 3.14—The vestibular apparatus and the semi-circular canal 122
Figure 3.15—The human inner ear ... 123
Figure 3.16—Hair bundle displacement ... 123
Figure 3.17—Here is a modern update, for motor and sensory cortex, of the famous “homunculi” diagrams of Wilder Penfield and others ... 124
Figure 4.1—Stereo VR Glasses at work ... 126
Figure 4.2—View of downtown Atlanta over Peachtree Plaza 130
Figure 4.3—“A Virtual Party” (Virtual Research HMD and a Cyberglove Data Glove) ... 137
Figure 4.4—Three-dimensional Scanner Image ... 139
Figure 5.1—House and Tree Constructed from Polygons 151
Figure 5.2—Degrees versus Radians ... 167
Figure 5.3—Cosine and Sine Vectors ... 167
Figure 5.4—Vectors in the 3-D Cartesian Coordinate System 170
Figure 5.5—The Vector Dot Product ... 173
Figure 5.6—Vector Normalization ... 175
Figure 5.7—Vector Addition ... 177
Figure 5.8—Vector Subtraction ... 177
Figure 5.9—Vector Scalar Multiplication ... 179
Figure 5.10—The Vector Cross Product ... 181
Figure 5.11—Vector Rotation about the Z-axis ... 185
Figure 5.12—Vector (Point) Translation ... 186
Figure 5.13—2-D and 3-D Coordinate Systems with Polygons 219
Figure 5.14—Convex, Nonconvex, and Complex Polygons 229
Figure 5.15—Parallel Projection ... 249
Figure 5.16—Perspective Projection ... 250
Figure 5.17—Clipping Lines ... 254
Figure 5.18—Clipping against a Viewport/Screen .. 256
Figure 5.19—A View Volume ... 257
Figure 5.20—Regions for the Liang-Barsky Algorithm 260
Figure 5.21—The Effects of Totally Outside Edges ... 260
Figure 5.22—Turning Vertex .. 261
Figure 5.23—Ordering of Vertices for Visible Side of Polygon 276
Figure 5.24—Diffuse Reflection .. 295
Figure 5.25—Specular Reflection ... 295
Figure 5.26—Reflection of Light Rays ... 297
Figure 5.27—Refraction/Transmission of Light Rays 298
Figure 5.28—Indices of Refraction for Some Common Transparent Materials .. 299
Figure 5.29—Pitch, Yaw and Roll .. 307
Figure 5.30—A Four-Mass Mass-Spring System ... 312
Figure 5.31—One Spring and One Mass ... 312
Figure 5.32—Conceptual Program Flow for the Interactive Visualizer 357
Figure 5.33—How Two Projections of a Cube are Positioned for Anaglyph Viewing .. 371
Figure 5.34—Human Stereo Vision ... 371
Figure 5.35—Anaglyph .ANA File for a Cube .. 373
Figure 5.36—Ray Tracing Viewing Geometry .. 386
Figure 5.37—Ray Tracing Ray-Object Intersection ... 386
Figure 5.38—Ray Tracing for Shadows .. 387
Figure 5.39—House Constructed of Polygons .. 395
Acknowledgments

The outline for this book was generated by Christopher D. Watkins and Stephen R. Marenka. The technical text and figures were written and created by Christopher D. Watkins, while the vast writing of the general text was done by Stephen R. Marenka. Vincent Mallette of the Georgia Institute of Technology made gross contributions to the human perception chapter of this book, with the research assistance of Alice Merta and Cassandra Jeffries. Christopher D. Watkins is totally responsible for the labour of birth for all of the software found with this book. Some proofing of the manuscript, as well as compilation of profiles for companies and universities involved in virtual reality products and research, was done by Christina N. Noland.

All of the software in this book was written in C using Borland C++ version 3.1. The Borland C++ software was furnished by Borland International, 1800 Green Hills Road, Scotts Valley, CA 95066.

Thanks also to WATCOM of 415 Phillip Street, Ontario, Canada, N2L 3X2 for supplying the WATCOM compiler version 9.5.

Thanks go to director Michael Sinclair of the Georgia Institute of Technology Multimedia Technology Laboratory for supplying images of the Eye Surgery Simulator, of the Motion Interactive System for sports, and of the three-dimensional scanner output.

Thanks go to Paul Kingston and Schelly Weedman of IVEX Corporation for information and images regarding the IVEX Visual System for Flight Simulation. IVEX Corporation designs, manufactures, and markets a series of high-performance visual simulation systems for use in civil and military training markets. Their systems distinguish themselves from others in that the overall reality of the visual scene is greater. This “reality” is primarily achieved using fractual texturing methods and high polygon counts for detail. IVEX Corporation is located at 4355 International Blvd., Norcross, GA 30093.

Thanks go to director James D. Foley, Larry Hodges, and Tom Meyer of the Georgia Institute of Technology College of Computing Graphics, Visualization & Usability (GVU) Center for the remainder of the images found throughout the book and for their contributions regarding virtual reality research.

Thanks go to Thomas Morley of Georgia Institute of Technology for supplying information on mass-spring systems.
Thanks to John Poulton and Linda Houseman of the University of North Carolina at Chapel Hill for their contributions regarding their research into virtual reality.

Thanks go to Ken Welton and Michael Glaser of Lavista Systems, Inc., Tucker, Georgia for supplying equipment necessary for the completion of this book.

Thanks to Jordan Hargrave for supplying us with the BGI graphics drivers found along with the software. The drivers are copyright Jordan Hargrave.

Thanks to Jack Brady of Southeastern Digital Images, Inc. and C/Food Software, Atlanta, for acting as a sounding board for ideas.

Thanks go to Jack Tumblin for his brainstorming regarding three-dimensional computer graphics techniques.

Thanks go to Stephen B. Coy for his help in obtaining information on algorithms for polygon filling and for his brainstorming on three-dimensional computer graphics techniques.

Thanks go to Adam Schiffman of The Graphics Alternative for production of his copyrighted image "silver surfers" found on the front cover of this book. The Graphics Alternative consults for 3D Animation, 2D Imaging, and Video. The Graphics Alternative is located at 190 El Cerrito Plaza #107, EL Cerrito, CA 94530, and TGA can also be contacted by voice at 510-528-1652 or BBS at 510-524-2780.

Thanks go to Mitch Kolbe of 34 W. Orange Street, Tarpon Springs, Florida for providing the photorealistic paintings used as texture maps. Mr. Kolbe has worked on such projects as one of America's largest murals, The Cyclorama, which depicts the Civil War in Atlanta in 1864. Several projects followed the completion of The Cyclorama; these included museum background murals, which required molding, casting, and fiberglass sculpture, as well as work for the U.S. Fish and Wildlife Service, Epcot Center, and Disney World. Since 1985 Mr. Kolbe has been fully dedicated to the creation of fine art oil paintings. He presently resides in the original studio of the famous artist George Innes Jr. in Tarpon Springs, Florida.

Algorithm, Inc. of 3776 Lavista Road, Suite 100A, Atlanta, GA 30084 produces tools for ray tracing, volume rendering, 3-D modeling and VR, animation, image processing, and interactive image warping and morphing. Contact us at the above address or call/fax (404) 634-0920 for more information regarding our products.

And special thanks again go to our parents, wives, and friends for their love and patience with us during this project.
And, as always, much thanks again to the Coca-Cola Company and to the Jolt Cola Company for providing Cola and to Snapple for providing tea to keep us awake long enough to complete this project.